Detecting Genomic Signatures of Natural Selection with Principal Component Analysis: Application to the 1000 Genomes Data.
نویسندگان
چکیده
To characterize natural selection, various analytical methods for detecting candidate genomic regions have been developed. We propose to perform genome-wide scans of natural selection using principal component analysis (PCA). We show that the common FST index of genetic differentiation between populations can be viewed as the proportion of variance explained by the principal components. Considering the correlations between genetic variants and each principal component provides a conceptual framework to detect genetic variants involved in local adaptation without any prior definition of populations. To validate the PCA-based approach, we consider the 1000 Genomes data (phase 1) considering 850 individuals coming from Africa, Asia, and Europe. The number of genetic variants is of the order of 36 millions obtained with a low-coverage sequencing depth (3×). The correlations between genetic variation and each principal component provide well-known targets for positive selection (EDAR, SLC24A5, SLC45A2, DARC), and also new candidate genes (APPBPP2, TP1A1, RTTN, KCNMA, MYO5C) and noncoding RNAs. In addition to identifying genes involved in biological adaptation, we identify two biological pathways involved in polygenic adaptation that are related to the innate immune system (beta defensins) and to lipid metabolism (fatty acid omega oxidation). An additional analysis of European data shows that a genome scan based on PCA retrieves classical examples of local adaptation even when there are no well-defined populations. PCA-based statistics, implemented in the PCAdapt R package and the PCAdapt fast open-source software, retrieve well-known signals of human adaptation, which is encouraging for future whole-genome sequencing project, especially when defining populations is difficult.
منابع مشابه
Detection of Genetic Differences between Holstein and Iranian North-West Indigenous Hybrid Cattles using Genomic Data
Extended Abstract Introduction and Objective: Selection to increase the frequency of new mutations useful only in some subpopulations leaves markers at the genome level. Most of these regions are related to genes and QTLs controlling significant economic traits. Material and Methods: In order to detection of genetic differences between Iranian northwestern crossbred and Holstein cattle breed,...
متن کامل1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans
Searching for Darwinian selection in natural populations has been the focus of a multitude of studies over the last decades. Here we present the 1000 Genomes Selection Browser 1.0 (http://hsb.upf.edu) as a resource for signatures of recent natural selection in modern humans. We have implemented and applied a large number of neutrality tests as well as summary statistics informative for the acti...
متن کاملA genome-wide scan to detect signatures of recent selection in Australian Merino sheep
Domestication and selection are processes that conserve the pattern of genetic diversities between and within populations. Identification of genomic regions that are targets of selection for phenotypic traits is one of the main aims of research in animal genetics. An approach for identifying divergently selected regions of the genome is to compare FST values among loci to estimate the genetic v...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملDevelopment of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2016